Назначение коллектора в машине постоянного тока

Содержание
  1. Устройство коллекторных машин постоянного тока
  2. Устройство щеточно коллекторного перехода
  3. Достоинства и недостатки коллекторных машин постоянного тока
  4. Коллекторный электродвигатель постоянного тока
  5. Коллекторный двигатель с постоянными магнитами
  6. Двигатели независимого и параллельного возбуждения
  7. Двигатель последовательного возбуждения
  8. Двигатель смешанного возбуждения
  9. Характеристики коллекторного электродвигателя постоянного тока
  10. Постоянная момента
  11. Смотрите также
  12. Электродвигатель постоянного тока: устройство, принцип работы, типы, управление
  13. Устройство и описание ДПТ
  14. Статор (индуктор)
  15. Ротор (якорь)
  16. Коллектор
  17. Принцип работы
  18. Типы ДПТ
  19. По наличию щеточно-коллекторного узла
  20. По виду конструкции магнитной системы статора
  21. Управление
  22. Механическая характеристика
  23. Регулировочная характеристика
  24. Области применения
  25. Преимущества и недостатки
  26. в дополнение к написанному
  27. Какую роль играет коллектор в двигателе постоянного тока
  28. Что такое коллекторный двигатель и его особенности
  29. Общее устройство коллекторных двигателей
  30. Ротор коллекторного двигателя
  31. Роторная обмотка
  32. Как устроен коллекторный узел и как он работает
  33. Устройство и конструкция коллекторной машины постоянного тока | Общие сведения об электрических машинах
  34. Кольцевой якорь.
  35. Неподвижная часть машины

Устройство коллекторных машин постоянного тока

Назначение коллектора в машине постоянного тока

Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот.

Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии. 

К коллекторным машинам постоянного тока относятся двигатель постоянного тока ДПТ и генератор постоянного тока ГПТ которые имеют одинаковую конструкцию и могут заменять друг друга то есть ДПТ может работать как ГПТ и наоборот. Разберем устройство коллекторных машин на примере двигателя постоянного тока.

  Коллекторная машина постоянного тока состоит из:

  1. Якоря (подвижная часть) который состоит из вала,обмотки якоря, коллектора, двух подшипников и сердечника. Сердечник — это цилиндр из штампованных листов электротехнической стали толщиной 0,5 мм покрытых электроизоляционным лаком. Такая сборная конструкция служит для уменьшения вихревых токов. В сердечнике есть пазы в которые вложены пазовые стороны обмотки якоря.
  2. Статора (4) (неподвижной части) — станина, главные полюса с полюсными катушками(2,3).

Статор конструктивно может быть выполнен двух видов:

  • сборный — состоит из цельной тянутой трубы и прикреплённым к ней внутри полюсов. Сердечник полюса выполнен в виде стального бруска либо из шихтованных пластин 0,5 — 1 мм. Обмотка полюса намотана вокруг сердечника. Обмотки полюсов соединены между собой последовательно и образуют обмотку возбуждения которая при подключении к источнику постоянного тока создаёт магнитное поле в магнитной системе двигателя.
  • цельный шихтованный — применяется в машинах мощностью 600 Вт и более. Он состоит из из пакета пластин электротехнической стали сложной конфигурации толщиной 0,35 — 0,5 мм.

Устройство щеточно коллекторного перехода

Наиболее сложным и ненадежным местом коллекторной машины является щеточно коллекторный переход который состоит из щеток (которые крепятся в щеткодержатели) и коллектора который состоит из набора коллекторных пластин трапецеидального сечения, разделенных миканитовыми прокладками. Пластины из меди и миканита удерживаются в сжатом состоянии за нижнюю часть, имеющую форму «ласточкина хвоста», посредством стальных конусных колец 1 (рис. 13.2). Выступающая вверх часть коллекторных пластин 6, называемая «петушок», служит для присоединения секций обмотки якоря к пластинам коллектора. Коллекторные пластины изолируют от конусных колец миканитовыми манжетами 3, а от втулки 5 — миканитовым изолирующим цилиндром 4. Поверхность медных пластин каллектора в процессе работы машины постепенно истирается щетками. Что бы при этом миканитовые прокладки не выступали над рабочей поверхностью медных пластин, что могло бы привести к нарушению электрического контакта коллектора со щетками, приходится периодически выполнять «продораживаные» коллектора. Эта операция состоит в том, что между рабочими поверхностями коллекторных пластин фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 13.4).

Достоинства и недостатки коллекторных машин постоянного тока

Электрические машины постоянного тока используют как в качестве генераторов, так и двигателей. Наибольшее применение имеют двигатели постоянного тока, диапазон мощности которых достаточно широк: от долей ватта (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других крупных механизмов).

Двигатели постоянного тока широко используют для привода подъемных устройств в качестве крановых двигателей и привода транспортных средств, а также в качестве тяговых двигателей.

Основные достоинства двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении, пониженная надежность.

Эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коплекторного узла, который к тому же является источником радиопомех и пожароопасности.

Но, несмотря на отмеченные недостатки, двигатели постоянного тока в некоторых случаях пока незаменимы, так как обладают большой перегрузочной способностью, хорошими пусковыми и регулировочными свойствами.

Коллекторный электродвигатель постоянного тока

Назначение коллектора в машине постоянного тока

Дмитрий Левкин

Статор (постоянный магнит)

Рисунок 1 – Электродвигатель постоянного тока с постоянными магнитами в разрезе

Ротор — вращающаяся часть электрической машины.

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента.

Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис.

1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Принцип работы коллекторного двигателя

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Схема коллекторного двигателя с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора.

Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора.

КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя.

Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U.

Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода.

Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора.

С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря.

При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря.

Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности.

В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным.

Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф ~ Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается.

При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается.

График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Важно: Недопустимо включать двигатели последовательного возбуждения в сеть в режиме холостого хода (без нагрузки на валу) или с нагрузкой менее 25% от номинальной, так как при малых нагрузках частота вращения якоря резко возрастает, достигая значений, при которых возможно механическое разрушение двигателя, поэтому в приводах с двигателями последовательного возбуждения недопустимо применять ременную передачу, при обрыве которой двигатель переходит в режим холостого хода. Исключение составляют двигатели последовательного возбуждения мощностью до 100—200 Вт, которые могут работать в режиме холостого хода, так как их мощность механических и магнитных потерь при больших частотах вращения соизмерима с номинальной мощностью двигателя.

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки.

Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой.

В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной.

Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения.

Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки.

Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения.

Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы).

Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Механические характеристики коллекторных двигателей постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z – суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Смотрите также

Электродвигатель постоянного тока: устройство, принцип работы, типы, управление

Назначение коллектора в машине постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита.

На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока.

Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество.

То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов.

С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение.

Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера.

В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения.

В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения.

Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

в дополнение к написанному

Какую роль играет коллектор в двигателе постоянного тока

Назначение коллектора в машине постоянного тока

Мы часто встречаемся с электродвигателями. Они обеспечивают работу бытовой и строительной техники, являются составной частью производственного оборудования. Немалая часть устройств имеет в составе коллекторный двигатель. Это один из простых и недорогих движков, который имеет хорошие характеристики. Именно этим, да ещё невысокой ценой, обусловлена его популярность.

Что такое коллекторный двигатель и его особенности

Коллектором называют часть двигателя, контактирующую со щётками. Этот узел обеспечивает передачу электроэнергии в рабочую часть агрегата. Коллекторным называется двигатель, у которого хотя бы одна обмотка ротора соединена со щётками и коллектором. Коллекторные электродвигатели бывают:

  • постоянного тока;
  • переменного тока;
  • универсальные.

Коллекторный двигатель может быть постоянного и переменного тока. Есть универсальные модели, которые могут работать от источника напряжения любого типа

Последние универсальные, работают как от постоянного, так и от переменного тока.

Они сохраняют популярность, даже несмотря на то, что наличие щёток отрицательный момент, так как щётки стираются и искрят. За этим узлом требуется постоянное наблюдение, техническое обслуживание.

К плюсам коллекторных двигателей относят возможность плавной регулировки скорости в широких пределах, невысокую стоимость.

Как и другие электромоторы, коллекторный состоит из статора и ротора (часто называют «якорь»). Его отличительной чертой является наличие на валу коллекторного узла, через который на машину передаётся электропитание. Устройство коллекторных моторов постоянного и переменного тока похожи, но имеют определённые отличия, потому рассмотрим подробнее их по отдельности.

Общее устройство коллекторных двигателей

Как и любой электродвигатель, коллекторный преобразует электрическую энергию в механическую. Он состоит из неподвижной части – статора и подвижной – ротора.

В статоре располагаются обмотки возбуждения, ротор отвечает за передачу возникающей механической энергии. Одна из составляющих частей ротора – вал.

С одной стороны, на валу размещён коллекторный узел, с помощью которого на обмотки ротора передаётся электрическая энергия.

Коллекторный двигатель: устройство

Статор состоит из корпуса, который защищает компоненты мотора от повреждений. Сверху и снизу корпуса крепятся магнитные полюса. Они необходимы для поддержания магнитного потока между статором и ротором.

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора.

Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован.

Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов.

Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера.

Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора.

К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт.

На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Устройство и конструкция коллекторной машины постоянного тока | Общие сведения об электрических машинах

Назначение коллектора в машине постоянного тока

Подробности Категория: Электрические машины

Устройство и основные элементы конструкции коллекторной машины постоянного тока

К основным частям машины постоянного тока коллекторного типа относятся статор (неподвижная часть), ротор (вращающаяся часть, которую в машинах постоянного тока обычно называют якорем), разделенные воздушным зазором, и коллектор. На внутренней поверхности статора укреплены полюса, предназначенные для создания в машине магнитного потока. Первоначально это были постоянные магниты, а в 1863 г. Г. Уайльдом было предложено применять электромагниты.

Кольцевой якорь.

Важным этапом в развитии конструкции машины постоянного тока был кольцевой якорь, предложенный А. Пачинотти в 1860 г. для двигателя и независимо от него 3. Граммом в 1870 г. для генератора.

Кольцевой якорь, несущий обмотку, соединенную с коллектором, представляет собой полый цилиндр, собранный из листов электротехнической стали, укрепленный на валу машины. Обмотка кольцевого якоря состоит из ряда катушек, равномерно расположенных по окружности.

Простейший способ образования замкнутой обмотки — это последовательное соединение рядом лежащих катушек. Концы катушек, в замкнутой обмотке общие для двух соседних, присоединены к коллекторным пластинам.

На рисунке 258 дан эскиз двухполюсного генератора постоянного тока с кольцевым якорем. Щетки, как это бывает обычно, установлены на нейтральной линии между полюсами.

Рис. 258. Кольцевой якорь.

При принятом направлении вращения по часовой стрелке э. д. с. в активных частях проводников, расположенных в зоне северного полюса, направлена «от нас», в зоне южного полюса — «к нам». Э. д. с.

витков соответственно верхней или нижней частей рисунка, складываясь, создают напряжение между щетками. Часть обмотки, состоящая из витков, идущих друг за другом по схеме, в пределах от одной щетки до следующей составляет параллельную цепь (ветвь).

На рисунке 258 таких параллельных ветвей две: 2а = 2, где а — число пар параллельных ветвей.

Рис. 259. Потенциальный многоугольник э. д. с.

Генератор с кольцевым якорем в определенной степени является технически совершенной машиной. Выполняя соответствующее число катушек и витков в каждой катушке, можно получить э. д. с. требуемой величины, пульсация э. д. с. незначительна. Но кольцевому якорю свойственны и определенные недостатки. Поскольку э. д. с.

в проводниках наводятся в результате пересечения ими индукционных линий потока в воздушном зазоре, то э. д. с. возникнут только в проводниках, лежащих на наружной поверхности якоря. Таким образом, кольцевой якорь характеризуется плохим использованием проводникового материала, затраченного на выполнение обмотки.

К недостаткам относятся также трудность крепления обмотки и возможность выполнения намотки практически только вручную. Величина пульсации напряжения, называемой коллекторной, может быть наглядно определена при помощи так называемого потенциального многоугольника э.д.с. якоря. Будем иметь в виду лишь первую гармоническую э.д.с.

в витке обмотки, а ширину щетки считать достаточно малой. Изобразим э.д.с. катушек векторами и отложим эти векторы друг за другом под углом, определяемым пространственным сдвигом между катушками. Обойдя две следующие друг за другом параллельные цепи (на рис.

258 это будет обход всей обмотки), получим правильный многоугольник с числом сторон, равным числу катушек на две параллельные ветви (рис. 259). При вращении якоря вращается также и соответствующий его обмотке потенциальный многоугольник э.д.с., но по отношению к неподвижным щеткам картину векторов э.д.с. можно считать как бы «условно застывшей».

На щетках будет напряжение, определяемое отрезком внутри многоугольника линии, проходящей через щетки. Как ясно из рисунка, вследствие конечного числа сторон многоугольника напряжение на щетках будет несколько меняться (пульсировать).

Как видно из таблицы 9, достаточно около  двадцати коллекторных пластин на две параллельные цепи, чтобы пульсацию можно было считать практически незаметной, что и справедливо для генераторов, питающих электроэнергией промышленные установки. С колебаниями напряжения на коллекторе следует считаться главным образом в установках проводной и радиосвязи, где эти колебания могут создать нежелательные помехи.
Рис. 260. Перенос проводника с внутренней стороны кольца на внешнюю поверхность барабана.

При сдвиге щеток с нейтрали (рис. 258) напряжение между ними уменьшается (имеется в виду холостой ход генератора), так как в этом случае в параллельных цепях в проводниках, расположенных на якоре в зоне угла сдвига щеток, э. д. с. действуют навстречу э. д. с. остальных проводников. В предельном случае, когда положение щеток будет совпадать с осью полюсов, э. д. с.

обмотки кольцевого якоря будет равна нулю. Барабанный якорь был предложен Ф. Гефнер-Альтенеком в 1872 г. Этот якорь выгодно отличался от кольцевого тем, что теперь не только сторона проводника, расположенная на наружной поверхности кольцевого якоря, стала активной, но и та, которая лежит на внутренней стороне кольца.

Это было достигнуто вынесением ее на наружную поверхность барабана, на ту его часть, где магнитное поле таково, что э.д.с. сторон витка складываются (рис. 260). На рисунке стороны витка показаны уложенными в пазы, укладка в пазы впервые была применена Венштремом в 1882 г. Сердечник якоря, вращаясь в магнитном поле, подвергается перемагничиванию.

Поэтому для уменьшения потерь от вихревых токов сердечник набирают из отдельных листов электротехнической стали Э1, Э2 толщиной 0,5 мм при нормальной для машин постоянного тока частоте перемагничивания 20—60 гц и из стали Э3 при более высоких частотах.

Листы либо насаживают непосредственно на вал, либо набирают на якорную втулку, которую надевают на вал, и изолируют друг от друга слоем лака или бумагой толщиной 0,03—0,05 мм. Иногда изоляцией служит тонкий слой окиси. В сердечнике якоря в зависимости от выбранной системы вентиляции могут быть аксиальные или радиальные каналы.

В последнем случае листы сердечника якоря в осевом направлении собирают отдельными пакетами каждый размером 4—7 см, между которыми оставляют промежутки 0,8—1 см, являющиеся вентиляционными каналами. На рисунке 261 показан барабанный якорь машины постоянного тока небольшой мощности, там же изображен лист стали сердечника с каналами аксиальной вентиляции.

Рис. 261. Якорь машины постоянного тока (а) и лист стали сердечника (б):

1 — сердечник якоря; 2 — секция обмотки;3 — коллектор.

В листах сердечника якоря равномерно по окружности штампуются пазы, в которых располагается обмотка якоря. Как будет показано далее, форма паза влияет на протекание процесса коммутации, основного физического процесса в коллекторной машине, связанного с переходом секции из одной параллельной ветви в другую.

В этом смысле открытые пазы наиболее благоприятны, поэтому в машинах постоянного тока они получили преимущественное распространение. Но при открытых пазах увеличиваются пульсации индукции кривой поля машины (рис. 108,а). Поэтому при малых диаметрах якоря, когда пульсации проявляются больше, наряду с открытыми пазами применяют пазы полузакрытые.

Эскизы пазов были даны на рисунке 85.

Обмотку в пазах кренят при помощи клиньев и бандажей из стальной проволоки, наматываемых поверх якоря.

Неподвижная часть машины

Неподвижная часть машины — статор представляет собой массивную станину, являющуюся в машине постоянного тока одновременно ярмом в той части, по которой проходит поток основных и дополнительных полюсов. Станину выполняют из стального литья, листовой стали или реже из чугуна.

К внутренней части станины крепят основные и между ними располагают дополнительные полюса (на рис. 266 дополнительные полюса не видны). Основные полюса служат для создания потока возбуждения, дополнительные — для улучшения уже упоминавшейся раньше коммутации, иначе обеспечения безыскрового снятия тока щетками с коллектора.

Сердечники основных и дополнительных полюсов обычно штампуют из листовой электротехнической стали толщиной от 0,5 до 2 мм и шпильками стягивают в осевом направлении. Со стороны зазора — воздушного промежутка между полюсом и якорем размером около 1 мм в малых машинах и до 1 см в крупных — основной полюс заканчивается полюсным наконечником.

Очертанием полюсного наконечника, как и в синхронных явнополюсных машинах, определяется пространственное распределение кривой поля в воздушном зазоре. Машина постоянного тока обычно выполняется с постоянным по величине воздушным зазором в средней и притом большей части полюсного наконечника.

Катушка возбуждения, намотанная на каркас, удерживается на сердечнике выступами полюсных наконечников. Полюса к станине крепятся болтами.

К станине машины с обоих ее торцов крепят подшипниковые щиты, чугунные или стальные, в которых устанавливают подшипники качения или, что реже, скольжения (рис. 266).

Будь в законе
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: